Exercise: BIC for Gaussians

(Source: Jaakkola.)

The Bayesian information criterion (BIC) is a penalized log-likelihood function that can be used for model selection. It is defined as

$$BIC = \log p(\mathcal{D}|\hat{\boldsymbol{\theta}}_{ML}) - \frac{d}{2}\log(N)$$
(1)

where d is the number of free parameters in the model and N is the number of samples. In this question, we will see how to use this to choose between a full covariance Gaussian and a Gaussian with a diagonal covariance. Obviously a full covariance Gaussian has higher likelihood, but it may not be "worth" the extra parameters if the improvement over a diagonal covariance matrix is too small. So we use the BIC score to choose the model.

We can write

$$\log p(\mathcal{D}|\hat{\boldsymbol{\Sigma}}, \hat{\boldsymbol{\mu}}) = -\frac{N}{2} \operatorname{tr}\left(\hat{\boldsymbol{\Sigma}}^{-1}\hat{\mathbf{S}}\right) - \frac{N}{2} \log(|\hat{\boldsymbol{\Sigma}}|)$$
(2)

$$\hat{\mathbf{S}} = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}_i - \overline{\mathbf{x}}) (\mathbf{x}_i - \overline{\mathbf{x}})^T$$
(3)

where $\hat{\mathbf{S}}$ is the scatter matrix (empirical covariance), the trace of a matrix is the sum of its diagonals, and we have used the trace trick.

- 1. Derive the BIC score for a Gaussian in D dimensions with full covariance matrix. Simplify your answer as much as possible, exploiting the form of the MLE. Be sure to specify the number of free parameters d.
- 2. Derive the BIC score for a Gaussian in D dimensions with a *diagonal* covariance matrix. Be sure to specify the number of free parameters d. Hint: for the digaonal case, the ML estimate of Σ is the same as $\hat{\Sigma}_{ML}$ except the off-diagonal terms are zero:

$$\hat{\boldsymbol{\Sigma}}_{diag} = \operatorname{diag}(\hat{\boldsymbol{\Sigma}}_{ML}(1,1),\dots,\hat{\boldsymbol{\Sigma}}_{ML}(D,D))$$
(4)