Exercise: Logistic regression vs LDA/QDA

(Source: Jaakkola.) Suppose we train the following binary classifiers via maximum likelihood.

- 1. GaussI: A generative classifier, where the class-conditional densities are Gaussian, with both covariance matrices set to I (identity matrix), i.e., $p(\mathbf{x}|y=c) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_c, \mathbf{I})$. We assume p(y) is uniform.
- 2. GaussX: as for GaussI, but the covariance matrices are unconstrained, i.e., $p(\mathbf{x}|y=c) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_{c},\boldsymbol{\Sigma}_{c})$.
- 3. LinLog: A logistic regression model with linear features.
- 4. QuadLog: A logistic regression model, using linear and quadratic features (i.e., polynomial basis function expansion of degree 2).

After training we compute the performance of each model M on the training set as follows:

$$L(M) = \frac{1}{n} \sum_{i=1}^{n} \log p(y_i | \mathbf{x}_i, \hat{\boldsymbol{\theta}}, M)$$
(1)

(Note that this is the *conditional* log-likelihood $p(y|\mathbf{x}, \hat{\theta})$ and not the joint log-likelihood $p(y, \mathbf{x}|\hat{\theta})$.) We now want to compare the performance of each model. We will write $L(M) \leq L(M')$ if model M must have lower (or equal) log likelihood (on the training set) than M', for any training set (in other words, M is worse than M', at least as far as training set logprob is concerned). For each of the following model pairs, state whether $L(M) \leq L(M')$, $L(M) \geq L(M')$, or whether no such statement can be made (i.e., M might sometimes be better than M' and sometimes worse); also, for each question, briefly (1-2 sentences) explain why.

- 1. GaussI, LinLog.
- 2. GaussX, QuadLog.
- 3. LinLog, QuadLog.
- 4. GaussI, QuadLog.
- 5. Now suppose we measure performance in terms of the average misclassification rate on the training set:

$$R(M) = \frac{1}{n} \sum_{i=1}^{n} I(y_i \neq \hat{y}(\mathbf{x}_i))$$
⁽²⁾

Is it true in general that L(M) > L(M') implies that R(M) < R(M')? Explain why or why not.