
Exercise: Logistic regression vs LDA/QDA

(Source: Jaakkola.) Suppose we train the following binary classifiers via maximum likelihood.

1. GaussI: A generative classifier, where the class-conditional densities are Gaussian, with both covariance matrices
set to I (identity matrix), i.e., p(x|y = c) = N (x|µc, I). We assume p(y) is uniform.

2. GaussX: as for GaussI, but the covariance matrices are unconstrained, i.e., p(x|y = c) = N (x|µc,Σc).

3. LinLog: A logistic regression model with linear features.

4. QuadLog: A logistic regression model, using linear and quadratic features (i.e., polynomial basis function
expansion of degree 2).

After training we compute the performance of each model M on the training set as follows:

L(M) =
1

n

n∑
i=1

log p(yi|xi, θ̂,M) (1)

(Note that this is the conditional log-likelihood p(y|x, θ̂) and not the joint log-likelihood p(y,x|θ̂).) We now want
to compare the performance of each model. We will write L(M) ≤ L(M ′) if model M must have lower (or equal)
log likelihood (on the training set) than M ′, for any training set (in other words, M is worse than M ′, at least as
far as training set logprob is concerned). For each of the following model pairs, state whether L(M) ≤ L(M ′),
L(M) ≥ L(M ′), or whether no such statement can be made (i.e., M might sometimes be better than M ′ and
sometimes worse); also, for each question, briefly (1-2 sentences) explain why.

1. GaussI, LinLog.

2. GaussX, QuadLog.

3. LinLog, QuadLog.

4. GaussI, QuadLog.

5. Now suppose we measure performance in terms of the average misclassification rate on the training set:

R(M) =
1

n

n∑
i=1

I(yi 6= ŷ(xi)) (2)

Is it true in general that L(M) > L(M ′) implies that R(M) < R(M ′)? Explain why or why not.
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