Exercise: MAP estimation for 1D Gaussians

(Source: Jaakkola.)

Consider samples x_1, \ldots, x_n from a Gaussian random variable with known variance σ^2 and unknown mean μ . We further assume a prior distribution (also Gaussian) over the mean, $\mu \sim \mathcal{N}(m, s^2)$, with fixed mean m and fixed variance s^2 . Thus the only unknown is μ .

- 1. Calculate the MAP estimate $\hat{\mu}_{MAP}$. You can state the result without proof. Alternatively, with a lot more work, you can compute derivatives of the log posterior, set to zero and solve.
- 2. Show that as the number of samples n increase, the MAP estimate converges to the maximum likelihood estimate.
- 3. Suppose n is small and fixed. What does the MAP estimator converge to if we increase the prior variance s^2 ?
- 4. Suppose n is small and fixed. What does the MAP estimator converge to if we decrease the prior variance s^2 ?