Exercise: Fun with entropies

(Source: Mackay.)

Consider the joint distribution p(X, Y)

			x		
		1	2	3	4
	1	1/8	1/16	1/32	1/32
y	2	1/16	1/8	1/32	1/32
	3	1/16	1/16	1/16	1/16
	4	1/4	0	0	0

- 1. What is the joint entropy H(X, Y)?
- 2. What are the marginal entropies H(X) and H(Y)?
- 3. The entropy of X conditioned on a specific value of y is defined as

$$H(X|Y=y) = -\sum_{x} p(x|y) \log p(x|y)$$
(1)

Compute H(X|y) for each value of y. Does the posterior entropy on X ever increase given an observation of Y?

4. The conditional entropy is defined as

$$H(X|Y) = \sum_{y} p(y)H(X|Y=y)$$
⁽²⁾

Compute this. Does the posterior entropy on X increase or decrease when averaged over the possible values of Y?

5. What is the mutual information between X and Y?