Exercise: Forwards vs reverse KL divergence

(Source: Exercise 33.7 of (?).) Consider a factored approximation q(x,y) = q(x)q(y) to a joint distribution p(x,y). Show that to minimize the forwards KL $\mathbb{KL}(p||q)$ we should set q(x) = p(x) and q(y) = p(y), i.e., the optimal approximation is a product of marginals

Now consider the following joint distribution, where the rows represent y and the columns x.

	1	2	3	4
1	1/8	1/8	0	0
2	1/8	1/8	0	0
3	0	0	1/4	0
4	0	0	0	1/4

Show that the reverse KL $\mathbb{KL}(q||p)$ for this p has three distinct minima. Identify those minima and evaluate $\mathbb{KL}(q||p)$ at each of them. What is the value of $\mathbb{KL}(q||p)$ if we set q(x,y) = p(x)p(y)?