Exercise: Uncorrelated and Gaussian does not imply independent unless jointly Gaussian

Let $X \sim \mathcal{N}(0,1)$ and Y = WX, where p(W = -1) = p(W = 1) = 0.5. It is clear that X and Y are not independent, since Y is a function of X.

- 1. Show $Y \sim \mathcal{N}(0, 1)$.
- 2. Show Cov[X, Y] = 0. Thus X and Y are uncorrelated but dependent, even though they are Gaussian. Hint: use the definition of covariance

$$\operatorname{Cov}\left[X,Y\right] = \mathbb{E}\left[XY\right] - \mathbb{E}\left[X\right]\mathbb{E}\left[Y\right] \tag{1}$$

and the rule of iterated expectation

$$\mathbb{E}\left[XY\right] = \mathbb{E}\left[\mathbb{E}\left[XY|W\right]\right] \tag{2}$$