Exercise: Normalization constant for a 1D Gaussian

The normalization constant for a zero-mean Gaussian is given by

$$Z = \int_{a}^{b} \exp\left(-\frac{x^{2}}{2\sigma^{2}}\right) dx \tag{1}$$

where $a = -\infty$ and $b = \infty$. To compute this, consider its square

$$Z^{2} = \int_{a}^{b} \int_{a}^{b} \exp\left(-\frac{x^{2} + y^{2}}{2\sigma^{2}}\right) dxdy$$
⁽²⁾

Let us change variables from cartesian (x, y) to polar (r, θ) using $x = r \cos \theta$ and $y = r \sin \theta$. Since $dxdy = rdrd\theta$, and $cos^2\theta + \sin^2\theta = 1$, we have

$$Z^{2} = \int_{0}^{2\pi} \int_{0}^{\infty} r \exp\left(-\frac{r^{2}}{2\sigma^{2}}\right) dr d\theta$$
(3)

Evaluate this integral and hence show $Z = \sqrt{\sigma^2 2\pi}$. Hint 1: separate the integral into a product of two terms, the first of which (involving $d\theta$) is constant, so is easy. Hint 2: if $u = e^{-r^2/2\sigma^2}$ then $du/dr = -\frac{1}{\sigma^2}re^{-r^2/2\sigma^2}$, so the second integral is also easy (since $\int u'(r)dr = u(r)$).