Exercise: Elementary properties of ℓ_2 regularized logistic regression

(Source: Jaakkola.). Consider minimizing

$$J(\mathbf{w}) = -\ell(\mathbf{w}, \mathcal{D}_{\text{train}}) + \lambda ||\mathbf{w}||_2^2$$
(1)

where

$$\ell(\mathbf{w}, \mathcal{D}) = \frac{1}{|\mathcal{D}|} \sum_{i \in \mathcal{D}} \log \sigma(y_i \mathbf{x}_i^T \mathbf{w})$$
(2)

is the average log-likelihood on data set \mathcal{D} , for $y_i \in \{-1, +1\}$. Answer the following true/ false questions.

- 1. $J(\mathbf{w})$ has multiple locally optimal solutions: T/F?
- 2. Let $\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} J(\mathbf{w})$ be a global optimum. $\hat{\mathbf{w}}$ is sparse (has many zero entries): T/F?
- 3. If the training data is linearly separable, then some weights w_j might become infinite if $\lambda = 0$: T/F?
- 4. $\ell(\hat{\mathbf{w}}, \mathcal{D}_{train})$ always increases as we increase λ : T/F?
- 5. $\ell(\hat{\mathbf{w}}, \mathcal{D}_{test})$ always increases as we increase λ : T/F?