Exercise: BIC for a 2d discrete distribution

(Source: Jaakkola.)

Let $x \in \{0, 1\}$ denote the result of a coin toss (x = 0 for tails, x = 1 for heads). The coin is potentially biased, so that heads occurs with probability θ_1 . Suppose that someone else observes the coin flip and reports to you the outcome, y. But this person is unreliable and only reports the result correctly with probability θ_2 ; i.e., $p(y|x, \theta_2)$ is given by

$$\begin{array}{c|ccc} y = 0 & y = 1\\ \hline x = 0 & \theta_2 & 1 - \theta_2\\ x = 1 & 1 - \theta_2 & \theta_2 \end{array}$$

Assume that θ_2 is independent of x and θ_1 .

- 1. Write down the joint probability distribution $p(x, y|\theta)$ as a 2 × 2 table, in terms of $\theta = (\theta_1, \theta_2)$.
- 2. Suppose have the following dataset: $\mathbf{x} = (1, 1, 0, 1, 1, 0, 0)$, $\mathbf{y} = (1, 0, 0, 0, 1, 0, 1)$. What are the MLEs for θ_1 and θ_2 ? Justify your answer. Hint: note that the likelihood function factorizes,

$$p(x, y|\boldsymbol{\theta}) = p(y|x, \theta_2)p(x|\theta_1) \tag{1}$$

What is $p(\mathcal{D}|\hat{\theta}, M_2)$ where M_2 denotes this 2-parameter model? (You may leave your answer in fractional form if you wish.)

- 3. Now consider a model with 4 parameters, $\boldsymbol{\theta} = (\theta_{0,0}, \theta_{0,1}, \theta_{1,0}, \theta_{1,1})$, representing $p(x, y|\boldsymbol{\theta}) = \theta_{x,y}$. (Only 3 of these parameters are free to vary, since they must sum to one.) What is the MLE of $\boldsymbol{\theta}$? What is $p(\mathcal{D}|\hat{\boldsymbol{\theta}}, M_4)$ where M_4 denotes this 4-parameter model?
- 4. Suppose we are not sure which model is correct. We compute the leave-one-out cross validated log likelihood of the 2-parameter model and the 4-parameter model as follows:

$$L(m) = \sum_{i=1}^{n} \log p(x_i, y_i | m, \hat{\theta}(\mathcal{D}_{-i}))$$
(2)

and $\hat{\theta}(\mathcal{D}_{-i})$) denotes the MLE computed on \mathcal{D} excluding row *i*. Which model will CV pick and why? Hint: notice how the table of counts changes when you omit each training case one at a time.

5. Recall that an alternative to CV is to use the BIC score, defined as

$$BIC(M, \mathcal{D}) \triangleq \log p(\mathcal{D}|\hat{\boldsymbol{\theta}}_{MLE}) - \frac{\operatorname{dof}(M)}{2} \log N$$
(3)

where dof(M) is the number of free parameters in the model, Compute the BIC scores for both models (use log base e). Which model does BIC prefer?