Exercise: PCA via successive deflation

Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ be the first k eigenvectors with largest eigenvalues of $\mathbf{C} = \frac{1}{n} \mathbf{X}^T \mathbf{X}$, i.e., the principal basis vectors. These satisfy

$$\mathbf{v}_j^T \mathbf{v}_k = \begin{cases} 0 & \text{if } j \neq k \\ 1 & \text{if } j = k \end{cases}$$
(1)

We will construct a method for finding the \mathbf{v}_j sequentially.

As we showed in class, \mathbf{v}_1 is the first principal eigenvector of \mathbf{C} , and satisfies $\mathbf{C}\mathbf{v}_1 = \lambda_1\mathbf{v}_1$. Now define $\tilde{\mathbf{x}}_i$ as the orthogonal projection of \mathbf{x}_i onto the space orthogonal to \mathbf{v}_1 :

$$\tilde{\mathbf{x}}_i = \mathbf{P}_{\perp \mathbf{v}_1} \, \mathbf{x}_i = (\mathbf{I} - \mathbf{v}_1 \mathbf{v}_1^T) \mathbf{x}_i \tag{2}$$

Define $\mathbf{X} = [\tilde{\mathbf{x}}_1; ...; \tilde{\mathbf{x}}_n]$ as the **deflated matrix** of rank d - 1, which is obtained by removing from the d dimensional data the component that lies in the direction of the first principal direction:

$$\tilde{\mathbf{X}} = (\mathbf{I} - \mathbf{v}_1 \mathbf{v}_1^T)^T \mathbf{X} = (\mathbf{I} - \mathbf{v}_1 \mathbf{v}_1^T) \mathbf{X}$$
(3)

1. Using the facts that $\mathbf{X}^T \mathbf{X} \mathbf{v}_1 = n\lambda_1 \mathbf{v}_1$ (and hence $\mathbf{v}_1^T \mathbf{X}^T \mathbf{X} = n\lambda_1 \mathbf{v}_1^T$) and $\mathbf{v}_1^T \mathbf{v}_1 = 1$, show that the covariance of the deflated matrix is given by

$$\tilde{\mathbf{C}} \triangleq \frac{1}{n} \tilde{\mathbf{X}}^T \tilde{\mathbf{X}} = \frac{1}{n} \mathbf{X}^T \mathbf{X} - \lambda_1 \mathbf{v}_1 \mathbf{v}_1^T \tag{4}$$

- 2. Let u be the principal eigenvector of \tilde{C} . Explain why $u = v_2$. (You may assume u is unit norm.)
- 3. Suppose we have a simple method for finding the leading eigenvector and eigenvalue of a pd matrix, denoted by $[\lambda, \mathbf{u}] = f(\mathbf{C})$. Write some pseudo code for finding the first K principal basis vectors of \mathbf{X} that only uses the special f function and simple vector arithmetic, i.e., your code should not use SVD or the eig function. Hint: this should be a simple iterative routine that takes 2–3 lines to write. The input is \mathbf{C} , K and the function f, the output should be \mathbf{v}_j and λ_j for j = 1 : K. Do not worry about being syntactically correct.