Exercise: Deriving the residual error for PCA

1. Prove that

$$||\mathbf{x}_i - \sum_{j=1}^K z_{ij} \mathbf{v}_j||^2 = \mathbf{x}_i^T \mathbf{x}_i - \sum_{j=1}^K \mathbf{v}_j^T \mathbf{x}_i \mathbf{x}_i^T \mathbf{v}_j$$
(1)

Hint: first consider the case K = 2. Use the fact that $\mathbf{v}_j^T \mathbf{v}_j = 1$ and $\mathbf{v}_j^T \mathbf{v}_k = 0$ for $k \neq j$. Also, recall $z_{ij} = \mathbf{x}_i^T \mathbf{v}_j$.

2. Now show that

$$J_K \triangleq \frac{1}{n} \sum_{i=1}^n \left(\mathbf{x}_i^T \mathbf{x}_i - \sum_{j=1}^K \mathbf{v}_j^T \mathbf{x}_i \mathbf{x}_i^T \mathbf{v}_j \right) = \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i^T \mathbf{x}_i - \sum_{j=1}^K \lambda_j$$
(2)

Hint: recall $\mathbf{v}_j^T \mathbf{C} \mathbf{v}_j = \lambda_j \mathbf{v}_j^T \mathbf{v}_j = \lambda_j$.

3. If K = d there is no truncation, so $J_d = 0$. Use this to show that the error from only using K < d terms is given by

$$J_K = \sum_{j=K+1}^d \lambda_j \tag{3}$$

Hint: partition the sum $\sum_{j=1}^{d} \lambda_j$ into $\sum_{j=1}^{K} \lambda_j$ and $\sum_{j=K+1}^{d} \lambda_j$.