Exercise: PPCA variance terms

Recall that in the PPCA model, $\mathbf{C} = \mathbf{W}\mathbf{W}^T + \sigma^2 \mathbf{I}$. We will show that this model correctly captures the variance of the data along the principal axes, and approximates the variance in all the remaining directions with a single average value σ^2 .

Consider the variance of the predictive distribution $p(\mathbf{x})$ along some direction specified by the unit vector \mathbf{v} , where $\mathbf{v}^T \mathbf{v} = 1$, which is given by $\mathbf{v}^T C \mathbf{v}$.

- 1. First suppose v is orthogonal to the principal subspace. and hence $v^T U = 0$. Show that $v^T C v = \sigma^2$.
- 2. Now suppose **v** is parallel to the principal subspace. and hence $\mathbf{v} = \mathbf{u}_i$ for some eigenvector \mathbf{u}_i . Show that $\mathbf{v}^T \mathbf{C} \mathbf{v} = (\lambda_i \sigma^2) + \sigma^2 = \lambda_i$.