Exercise: Spam classification using naive Bayes

We will re-examine the dataset from Exercise "Spam classification using logistic regression".

- 1. Use naiveBayesFit.m and naiveBayesPredict.m on the binarized spam data. What is the training and test error? (You can try different settings of the pseudocount α if you like (this corresponds to the Beta(α, α) prior each θ_{jc}), although the default of $\alpha = 1$ is probably fine.) Turn in your error rates.
- 2. Modify the code so it can handle real-valued features. Use a Gaussian density for each feature; fit it with maximum likelihood. What are the training and test error rates on the standardized data and the log transformed data? Turn in your 4 error rates and code.